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Asymptotic level spacing distribution for a q-deformed
random matrix ensemble

K A Muttalib and J R Klauder†
Department of Physics, University of Florida, Gainesville, FL 32611, USA

Received 20 February 1996

Abstract. We obtain the asymptotic behaviour of the nearest-neighbour level spacing
distribution for aq-deformed unitary random matrix ensemble.

Theq-deformed unitary random matrix ensemble introduced in [1] describes a transition in
spectral statistics from the highly correlated Gaussian unitary ensemble [2] (GUE,q → 1)
towards a completely uncorrelated Poisson ensemble (q → 0) as a function ofq. Such
transitions occur in a wide variety of physical systems including disorder and chaos [3].
In particular, the transition in the nearest-neighbour spacing distribution obtained from
the model seems to show a remarkable similarity with that obtained numerically from a
microscopic tight-binding Anderson model [4] describing the metal–insulator transition in
disordered conductors. This similarity holds despite the fact that the problem of disordered
conductors is known to have a small additional level-interaction [5, 6] which is not taken
into account in [1]. (This term is known to change the numerical value of the variance of
conductance by a very small amount in quasi-one dimension.) The similarity is all the more
remarkable because it includes an apparent fixed point ats = s0 in the spacing distribution
P(s) (s0 ' 1.8 for unitary ensembles ands0 ' 2 for orthogonal ensembles). The fixed point
was used in [4] to propose the areaA = ∫ ∞

s0
P(s) ds as a one-parameter characterization

of the spacing distribution. The length and disorder dependences as well as the scaling
behaviour of the normalized parameterγ = (A − AW)/(AP − AW), where the subscripts
W and P refer to the Wigner and the Poisson limits, were studied in detail numerically
and shown to contain information about the metal–insulator transition. However, the level
spacing distribution of theq-ensemble requires the evaluation of a Fredholm determinant
of the two-level kernel over a finite interval, and while the kernel was obtained analytically
in [1], the determinant was evaluated numerically for various values ofq. It is clearly
of interest to evaluate analytically the spacing distribution as a function ofq in order to
understand the role ofq-deformation in these systems by, e.g., relatingq to the parameters
A and/or γ . While it has not been possible to obtain the complete spacing distribution
analytically for all s even in the GUE limit [2], the work of [4] shows that because of
the (apparent) fixed point,P(s > s0) already contains valuable information. In the present
work we obtain the asymptotic behaviour of the spacing distribution both near GUE and
Poisson limits using the Szegö theorem on the asymptotic behaviour of a related Toeplitz

† Also at the Department of Mathematics.

0305-4470/96/164853+05$19.50c© 1996 IOP Publishing Ltd 4853



4854 K A Muttalib and J R Klauder

determinant. Unfortunately, the method is not accurate enough to obtain information about
the (apparent) fixed point itself, which requires evaluation of the terms independent ofs as
well. However, by exploiting the existence of at least an approximate fixed point, we are
able to determine the leadings-independent (butq-dependent) terms and obtain a reasonably
good analytical expression for the asymptotic spacing distribution fors > s0 near the GUE
as well as the Poisson limits; this can then be used to make at least qualitative connection
with the numerically accessible parametersA or γ . Moreover, a qualitative understanding
of the q-deformation of the spacing distribution obtained from our results should provide a
basis for a more careful analysis to understand the nature of the fixed point.

We will assume that theq-ensemble is characterized, in the properly scaled variables
where the average spacing between adjacent levels is unity, by the two-level kernel obtained
in [1]:

K(ζ − η; q 6 1) ≈ β

2π

sin[(ζ − η)π ]

sinh[(ζ − η)β/2]
q = e−β. (1)

Although the above kernel is valid only in restricted regimes [1], it is in these regimes
that the kernel is translationally invariant and seems to be model independent [7]. We will
obtain the asymptotic level spacing distribution given by this kernel. For comparison, the
corresponding kernel for a GUE is given by

K(ζ − η; q = 1) = sin[(ζ − η)π ]

(ζ − η)π
(2)

which is universal, independent of any parameter. The asymptotic behaviour of the level
spacing for this kernel has been obtained in a variety of ways [8, 9], although a complete
expression valid for all spacing is not available.

Given the kernelK, the probabilityE(t) that the interval(−t, t) does not contain any
level can be obtained as a Fredholm determinant of the integral equation [2]∫ t

−t

K(ζ − η)f (η) dη = λf (ζ ). (3)

Changing variables such that the range of the integral is(−1, 1), one gets

E(t) = det(1 − Kt) (4)

where

Kt(ζ − η; q) ≈ βt

2π

sin[(ζ − η)πt ]

sinh[(ζ − η)βt/2]
. (5)

The nearest-neighbour spacing distribution is then given by

P(s) = d2

ds2
E(s) s = 2t. (6)

We first note that the kernelKt can be written as the Fourier transform of the function

φ(k) = sinh[b]

cosh[bk/πt ] + cosh[b]
b = 2π2

β
. (7)

To exploit the connection with the Toeplitz determinant, consider the function

f (θ) = 1 − sinh[b]

cosh[bθ/a] + cosh[b]
. (8)

Then in the limitN → ∞ and Na → 2πt � 1, we can identify det[1− Kt ] with the
N × N Toeplitz determinant

DN(f ) = det

[
1

2π

∫ π

−π

f (θ)ei(j−k)θ dθ

]
j,k=1,2,...,N

. (9)
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The functionf (θ) has the following qualitative features. In the limitβ � 2π2 (b � 1),
f is a smooth non-zero positive function over the entire range(−π, π). In the opposite
limit β � 2π2, we can write

f (θ) ≈ 1 − 1

1 + exp((b/a)(|θ | − a))
. (10)

Note that the second term can be thought of as a Fermi function with temperaturea/b

and chemical potentiala. For β → 0, f (θ) = 0 for −a < θ < a, and 1 for |θ | > a.
For non-zero but smallβ, the function is still exponentially small within some finite range
of θ , and we can use the Fermi function analogy to approximate the function as zero for
|θ | < α, whereα ≈ a(1− 1/b). We will see below that as long asf (θ) can be considered
to be zero in some range ofθ , the asymptotic spacing distribution is ‘GUE-like’, with
P(s) ∼ exp(−constant× s2). When there is no gap, i.e.f (θ) is non-zero everywhere, the
asymptotic spacing distribution is ‘Poisson-like’, withP(s) ∼ exp(−constant× s). The
crossover occurs aroundβ ≈ 2π2.

We first consider the simpler limitβ � 2π2. In this limit f (θ) is a smooth non-zero
positive function over the entire range(−π, π), and a theorem due to Szegö [10] allows us
to write down the asymptotics

ln DN(f ) ≈ Nf0 + 1

4

∞∑
k=1

kfkf−k + O(1) (11)

wherefk are the Fourier coefficients of lnf (θ):

ln f (θ) =
∞∑

k=−∞
fkeikθ . (12)

Consider the first term

f0 = 1

2π

∫ π

−π

ln f (θ) dθ

= a

πb

∫ bπ/a

0
ln[1 − g(x)] dx (13)

where

g(x) = sinh[b]

cosh[x] + cosh[b]
. (14)

In the limit N → ∞ andNa → 2πt = πs, we can take the upper limit to∞, and obtain

Nf0 = s

b

∫ ∞

0
ln[1 − g(x)] dx (15)

Note that this term is linear ins. The next term is independent ofN . SinceNa → πs, it
must be independent ofs as well. To leading order, it turns out to be independent ofa, so
the term is of O(1). Clearly it is b-dependent. However, note that the asymptotic formula
is not very accurate in this order, so we will not gain much by evaluating this term. Instead,
since we already have the correct asymptotics dependence, we will use the existence of a
fixed point ats = s0 ' 1.8 to obtain the leadings-independent terms. Note that the fixed
point is seen in the numerical evaluation of the determinant in [1]. We do not know to what
accuracy the fixed point can be considered exact. We will assume that it can be considered
exact at least up to leading order inβ.
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Going back to the first term, expanding the logarithm inside the integral in (15) for
smallb, the leading term gives−s, the next term has the leading correction due toβ, given
by −b/6 = −π2/3β. To leading order, we then have

E(s; β) ≈ exp[−s(1 + π2/3β) + C] (16)

where C includes theβ-dependent terms not calculated in this scheme. The spacing
distribution is given by a second derivative ofE(s) with respect tos, and we obtain

P(s) ≈ exp[−s(1 + π2/3β) + 2π2/3β + C] (17)

where we have written the prefactor as the exponential of a logarithm and kept only the
leading order terms. We now demand that there exists a fixed point ats0 such that all curves
of P(s) as a function ofs for various values ofβ cross through this point, at least up to
leading order inβ. The fixed point is where these curves meet the Poisson curve given by
PP(s) = e−s . This means that the constantC must be such that

P(s) ≈ exp[−s − (s − s0)π
2/3β] = PP(s)e

−(s−s0)π
2/3β β � 2π2. (18)

The value ofs0 is given by the (larger) crossing point of the Poisson curve with the GUE
curve, and turns out to be close to 1.8. We can now use equation (18) to identify the
parameterβ with those of [4]. The area under the curve froms0 to ∞ is simply

A = e−s0

1 + π2/3β
. (19)

SinceAP = exp−s0, it is easy to see that the normalized scaling parameterγ is given by
(1 − γ ) ∝ 1/β.

We now consider the opposite limit,β � 2π2. In this limit as we mentioned before,
the functionf (θ) can be considered to be zero for|θ | < α = a(1−β/2π2). As soon as the
function is zero for some range ofθ , the Szeg̈o theorem we used above no longer applies,
and we have to use a generalization of the theorem due to Widom [11]. The analogous
formula for the asymptotic behaviour for the determinant reads

ln DN(f ) ≈ N2 ln cos
α

2
− 1

4
ln

(
N sin

α

2

)
+ NF0 + 1

2

∞∑
k=1

kFkF−k + B (20)

where

F(θ) = f
(
2 cos−1 cos( 1

2α) cosθ
)

(21)

andB is a constant.f is the same function defined as in (8). Taking the limitN → ∞,
Na = πs � 1 we get

ln D(f ) ≈ −1

8
(πs)2

(
1 − β

2π2

)2

− 1

4
ln

[
πs

2

(
1 − β

2π2

)]
+ NF0 + 1

2

∞∑
k=1

kFkF−k + B.

(22)

The term involvingFk is independent ofN and therefores; so in the spirit of our previous
scheme we will not evaluate it. The only term left to consider isNF0, where

F0 = 1

2π

∫ π

−π

ln F(θ) dθ

= 1

2π

∫ 2π−α

α

ln f (φ)
sin[φ/2]√

cos2[α/2] − cos2[φ/2]
dφ (23)
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where we have made the change of variablesφ = 2 cos−1 cos( 1
2α) cosθ as given in (21).

For β � 2π2, the functionf (φ) is well approximated by equation (10), and its logarithm is
appreciable only forφ 6 a. In this regime the argument of the logarithm does not change
much, and we can replace it by a constant1

2. The integral can then be easily evaluated
giving

NF0 ≈ − ln 2

2π

√
βs. (24)

Up to linear order inβ, equation (22) then leads to

E(s; β) ≈ E(s; β = 0) exp

[
π

8

(√
βs − 2 ln 2

π2

)2

+ B1

]
(25)

whereB1 is independent ofs but includesβ dependent terms. The spacing distribution
obtained from (6) in the asymptotic limitπs � 1 can now be approximately given by

P(s) ≈ PW(s) exp

(
π

8

√
β(s − s0)

[√
β(s + s0) − 2

2 ln 2

π2

])
β � 2π2 (26)

where the constantB1 in (25) has been fixed according to our previous scheme, namely by
demanding the existence of a fixed point up to this order ats = s0, andPW(s) denotes the
Wigner or the GUE spacing distribution.

Note that as long as
√

βs0 > 2(2 ln 2/π2), the tail of the distribution beyonds0 is above
the limiting GUE tail, going towards the Poisson limit with increasingβ, as expected.
However, in the limit

√
β(s +s0) < 2(2 ln 2/π2), part of the tail ofP(s) beyonds0 is below

the GUE tail, goingaway from the Poisson limit with increasingβ. This is counterintuitive.
We suspect that the nature of the asymptotics, given byβ → 0 faster thans → ∞, makes
our approximation unreliable in this latter restricted regime.

Equations (18) and (26) are our main results. Detailed comparison with numerical results
for transitions in spacing distribution seen in a variety of complex physical systems [3, 7]
might elucidate any possible underlying connection between complexity andq-deformation.
The results should also provide the basis for a more careful study of the unexpected fixed
point.
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